Sort List
题目: Sort a linked list in \(O(n\log n)\) time using constant space complexity.
解题思路:
这一题我做的有点"奸诈",我先是将链表元素映射成数组元素,然后对数组排序,最后再返回成链表。代码如下:
#!python
# Definition for singly-linked list.
class ListNode:
def __init__(self, x):
self.val = x
self.next = None
class Solution:
# @param head, a ListNode
# @return a ListNode
def sortList(self, head):
p = head
v = []
while p!=None:
v.append(p.val)
p = p.next
v = sorted(v)
if len(v) !=0:
root = ListNode(v[0])
else:
return None
p = root
for i,item in enumerate(v):
if i !=0:
q = ListNode(item)
p.next = q
p=q
if p!= None:
p.next = None
return root
Insertion Sort List
题目: Sort a linked list using insertion sort.
解题思路:
思路很简单,就是简单的插入排序的策略,具体也没啥好说的.但是在具体的实现过程中,总是出现超时的情况,多次修改之后终于通过了,总结了几点需要注意的地方:
- 比较的时候,遇到相同的数值,直接交换,插入到相同的序列的最前部,这样能避免不必要的重复比较
- 第一层循环的时候,一开始就需要判断当前元素是否是已排好序的序列中的最大值,如果是,则第二层循环就可以不需要了,避免了多余的比较
- 由于2中提前比较了最大值,所以第二层循环中不必担心从前往后的扫描会扫到当前的自身,这样可以在最内层的循环中减少判断过程,提高效率
最后贴上代码:
#!python
#Definition for singly-linked list.
class ListNode:
def __init__(self, x):
self.val = x
self.next = None
class Solution:
# @param head, a ListNode
# @return a ListNode
def insertionSortList(self, head):
if head == None:
return None
tmpHead = ListNode(-1)
tmpHead.next = head
p = tmpHead.next
while( p != None and p.next != None ):
if p.next.val < p.val:
q = tmpHead
while(q.next.val < p.next.val):
q = q.next
t = p.next
p.next = p.next.next
t.next = q.next
q.next = t
else:
p = p.next
return tmpHead.next
LRU Cache
题目: Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations:
get
andset
.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key,value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
解题思路:
这一题相对来说,也很简单,主要是维护一个LRU列表,其中的值就是key,越是常使用的key越是在列表后部,越是不常用的,越是排在前面。
代码如下:
#!python
class LRUCache:
# @param capacity, an integer
def __init__(self, capacity):
self.capacity = capacity
self.values = dict()
self.LRU = []
# @return an integer
def get(self, key):
if key in self.values:
self.LRU.remove(key)
self.LRU.append(key)
return self.values.get(key,-1)
# @param key, an integer
# @param value, an integer
# @return nothing
def set(self, key, value):
if key in self.values:
self.values[key] = value
self.LRU.remove(key)
self.LRU.append(key)
elif len(self.values) < self.capacity:
self.values[key] = value
self.LRU.append(key)
else:
maxKey = self.LRU.pop(0)
self.values.pop(maxKey)
self.values[key] = value
self.LRU.append(key)
Comments
So what do you think? Did I miss something? Is any part unclear? Leave your comments below